Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones
نویسندگان
چکیده
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.
منابع مشابه
Citizen Sensors for SHM: Towards a Crowdsourcing Platform
This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the a...
متن کاملDevelopment of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wirele...
متن کاملPothole Detection by Soft Computing
Subject- Potholes on roads are regarded as serious problems in the transportation domain and ignoring them leads to the increase of accidents, traffic, vehicle fuel consumption and waste of time and energy. As a result, pothole detection has attracted researchers’ attention and different methods have been presented for it up to now. Background- The major part of previous research is based on i...
متن کاملS Filter Based Sensor Fusion for Activity Recognition using Smartphone
Activity Recognition based on the sensors available on a smartphone is becoming a widely researched area. Smartphones are capable of collecting vital data from the sensors. These sensors include acceleration sensors, position sensors, vision sensors, audio sensors, temperature sensors and direction sensors. In this paper we propose a filter based sensor fusion system that uses smartphones accel...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کامل